The deubiquitinating enzyme AMSH1 is required for rhizobial infection and nodule organogenesis in Lotus japonicus.
نویسندگان
چکیده
Legume-rhizobium symbiosis contributes large quantities of fixed nitrogen to both agricultural and natural ecosystems. This global impact and the selective interaction between rhizobia and legumes culminating in development of functional root nodules have prompted detailed studies of the underlying mechanisms. We performed a screen for aberrant nodulation phenotypes using the Lotus japonicus LORE1 insertion mutant collection. Here, we describe the identification of amsh1 mutants that only develop small nodule primordia and display stunted shoot growth, and show that the aberrant nodulation phenotype caused by LORE1 insertions in the Amsh1 gene may be separated from the shoot phenotype. In amsh1 mutants, rhizobia initially became entrapped in infection threads with thickened cells walls. Some rhizobia were released into plant cells much later than observed for the wild-type; however, no typical symbiosome structures were formed. Furthermore, cytokinin treatment only very weakly induced nodule organogenesis in amsh1 mutants, suggesting that AMSH1 function is required downstream of cytokinin signaling. Biochemical analysis showed that AMSH1 is an active deubiquitinating enzyme, and that AMSH1 specifically cleaves K63-linked ubiquitin chains. Post-translational ubiquitination and deubiquitination processes involving the AMSH1 deubiquitinating enzyme are thus involved in both infection and organogenesis in Lotus japonicus.
منابع مشابه
Lotus japonicus SUNERGOS1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection
A symbiotic mutant of Lotus japonicus, called sunergos1-1 (suner1-1), originated from a har1-1 suppressor screen. suner1-1 supports epidermal infection by Mesorhizobium loti and initiates cell divisions for organogenesis of nodule primordia. However, these processes appear to be temporarily stalled early during symbiotic interaction, leading to a low nodule number phenotype. This defect is ephe...
متن کاملA Novel ARID DNA-Binding Protein Interacts with SymRK and Is Expressed during Early Nodule Development in Lotus japonicus[C][W][OA]
During the establishment of symbiosis in legume roots, the rhizobial Nod factor signal is perceived by the host cells via receptorlike kinases, including SymRK. The NODULE INCEPTION (NIN) gene in Lotus japonicus is required for rhizobial entry into root cells and for nodule organogenesis. We describe here a novel DNA-binding protein from L. japonicus, referred to as SIP1, because it was identif...
متن کاملThe molecular network governing nodule Łorganogenesis and infection in the model legume Lotus japonicus
Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that hostencoded mechanisms control...
متن کاملA novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus.
During the establishment of symbiosis in legume roots, the rhizobial Nod factor signal is perceived by the host cells via receptor-like kinases, including SymRK. The NODULE INCEPTION (NIN) gene in Lotus japonicus is required for rhizobial entry into root cells and for nodule organogenesis. We describe here a novel DNA-binding protein from L. japonicus, referred to as SIP1, because it was identi...
متن کاملLIN, a novel type of U-box/WD40 protein, controls early infection by rhizobia in legumes.
The formation of a nitrogen-fixing nodule requires the coordinated development of rhizobial colonization and nodule organogenesis. Based on its mutant phenotype, lumpy infections (lin), LIN functions at an early stage of the rhizobial symbiotic process, required for both infection thread growth in root hair cells and the further development of nodule primordia. We show that spontaneous nodulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 83 4 شماره
صفحات -
تاریخ انتشار 2015